1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
| from __future__ import absolute_import, division, print_function, unicode_literals
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow import keras
print(tf.__version__)
def plot_image(i, predictions_array, true_label, img):
predictions_array, true_label, img = predictions_array[i], true_label[i], img[i]
plt.grid(False)
plt.xticks([])
plt.yticks([])
plt.imshow(img, cmap=plt.cm.binary)
predicted_label = np.argmax(predictions_array)
if predicted_label == true_label:
color = 'blue'
else:
color = 'red'
plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label],
100 * np.max(predictions_array),
class_names[true_label]),
color=color)
def plot_value_array(i, predictions_array, true_label):
predictions_array, true_label = predictions_array[i], true_label[i]
plt.grid(False)
plt.xticks([])
plt.yticks([])
thisplot = plt.bar(range(10), predictions_array, color="#777777")
plt.ylim([0, 1])
predicted_label = np.argmax(predictions_array)
thisplot[predicted_label].set_color('red')
thisplot[true_label].set_color('blue')
# Dataset
fashion_mnist = keras.datasets.fashion_mnist.load_data()
# fashion Dataset
(train_images, train_labels), (test_images,test_labels) = fashion_mnist
# Class
class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
# Shape, Label
print("Train Shape : " ,train_images.shape)
print("Train Label : " ,len(train_labels))
print("Test Shape : " ,test_images.shape)
print("Test Label : " ,len(test_labels))
# Preprossing
train_images = train_images / 255.0
test_images = test_images / 255.0
# model
model = keras.Sequential([
keras.layers.Flatten(input_shape=(28, 28)),
keras.layers.Dense(128, activation='relu'),
keras.layers.Dense(10, activation='softmax')
])
# compile
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
# train
model.fit(train_images, train_labels, epochs=5)
# accuracy
test_loss, test_acc = model.evaluate(test_images, test_labels)
print('\n테스트 정확도:', test_acc)
# predictions
predictions = model.predict(test_images)
i = 11
print('prediction[Argmax] : ', np.argmax(predictions[i]))
print('ground-truth : ',test_labels[i])
# batch make
img = (np.expand_dims(test_images[i],0))
print(img.shape)
# batch prediction
predictions_single = model.predict(img)
plt.subplot(1,2,1)
plt.grid(False)
plt.imshow(img[0], cmap=plt.cm.binary)
plt.subplot(1,2,2)
plot_value_array(0, predictions_single, test_labels)
_ = plt.xticks(range(10), class_names, rotation=45)
plt.show()
print('prediction[Argmax] : ', np.argmax(predictions_single[0]))
print('ground-truth : ',test_labels[i])
|